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ABSTRACT For many bacterial viruses, the choice of whether to kill host cells or enter a latent state depends on the multiplicity of
coinfection. Here, we present a mathematical theory of how bacterial viruses can make collective decisions concerning the fate of
infected cells. We base our theory on mechanistic models of gene regulatory dynamics. Unlike most previous work, we treat the
copy number of viral genes as variable. Increasing the viral copy number increases the rate of transcription of viral mRNAs. When
viral regulation of cell fate includes nonlinear feedback loops, very small changes in transcriptional rates can lead to dramatic
changes in steady-state gene expression. Hence, we prove that deterministic decisions can be reached, e.g., lysis or latency,
depending on the cellular multiplicity of infection within a broad class of gene regulatory models of viral decision-making. Com-
parisons of a parameterized version of the model with molecular studies of the decision structure in the temperate bacteriophage l

are consistent with our conclusions. Because the model is general, it suggests that bacterial viruses can respond adaptively to
changes in population dynamics, and that features of collective decision-making in viruses are evolvable life history traits.

INTRODUCTION

Bacterial viruses (i.e., bacteriophages or phages) can be clas-

sified based on their life histories into two broad categories:

virulent and temperate (1,2). Virulent phages possess two life

history stages: an extracellular stage, in which a metabolically

inactive virion passively diffuses in the environment; and an

intracellular stage, in which the viral genome redirects tran-

scription and translation leading to virion production and cell

lysis. In contrast, once temperate phages infect host cells, they

can either kill the host cell, thereby releasing viral progeny, or

integrate their genetic material with that of their bacterial host.

Once the viral genome of a temperate phage has integrated, the

bacterium is referred to as a lysogen. In the lysogenic stage,

minimal transcription and translation of viral proteins occurs

and the viral genome (i.e., prophage) is transmitted vertically.

Later, induction of the prophage can occur and the virus can

reenter the lytic pathway. The choice of whether to lyse a host

cell or enter a latent state upon infection as well as the mech-

anisms of prophage induction have been extensively studied

in temperate phages. Analysis of the molecular mechanisms

underlying the lysis versus lysogeny pathways has formed

the basis for formative work on gene regulation (3). The study

of the lysis-lysogeny switch in l-phage has become a model

system for understanding how temperate phages decide the

means by which they exploit hosts (4–15).

Nearly all theoretical studies of temperate phage decision

dynamics have claimed that switching between alternative

pathways depends on some change in environmental condi-

tions or some other random process inherent to the virus

(6,7,10,16). However, long-standing experimental assays (4)

and recent molecular studies (8,11) have found that changes in

multiplicity of infection drastically change the initial decision

switch in l-phage. The experimental evidence indicates that

two or more coinfecting l-phages will lead to lysogeny,

whereas a single infecting l-phage leads to cell lysis (4,8,11).

This qualitative change in outcome based on small differences

in levels of coinfection may seem counterintuitive, and thus

far, lacks a coherent theoretical description. Here we show

that when multiple viruses infect the same host cell, nonlin-

earities in gene regulatory dynamics can lead to qualitative

changes in steady-state gene expression, and ultimately to a

deterministic outcome, i.e., lysis or lysogeny. This finding

suggests that features of viral collective decision switches are

inheritable, mutable, and evolvable. The evolvable quantities

in this process include the critical multiplicity of infection at

which the switch occurs and the ratio of steady-state gene

expression for the two different decision states. These features

are determined, in part, by kinetic parameters of binding

which are easily affected by mutation.

Regulatory model of viral decision processes

Consider a mixture of temperate bacterial viruses and bac-

terial hosts in which cells are coinfected byM viruses of an

identical strain. A simple model of this situation and a pos-

sible mechanism for a viral decision process within a bacte-

rial cell is depicted in Fig. 1. Two genes in this network, x and

y, share a common promoter region. When X-dimers are

bound to the promoter, they halt transcription of gene y and

enhance that of x. When Y-dimers are bound to the promoter,

they halt transcription of both genes x and y. Hence, the viral

regulatory network includes both a positive and a negative

feedback loop (see Table 1 for more details).

Unlike other models in which the copy number remains

fixed, here we set the copy number of viral genes equal to the

number of coinfecting viruses, M: Following standard
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methods (10,17–19), we consider a mass-action model of the

dynamics of promoters, mRNA, and proteins. The network is

comprised of an excitatory and an inhibitory loop. When

promoters are unoccupied, mRNA is transcribed at a rate ax

and ay for the excitatory and inhibitory loops, respectively.

These monomers can dimerize and then bind to the promoter

site. When X-dimers are bound, they inhibit transcription of

gene y and enhance transcription of gene x at a rate bx. When

Y-dimers are bound, they inhibit transcription of both genes x
and y. Following standard methods in the field (10), we track

the density of monomers x1 and y1, dimers x2 and y2, mRNA

transcripts mx and my, and promoter occupancies d0, dx, and

dy, such that the dynamics are

_x1 ¼ 2k�x2 � 2k1x
2

1 1 smx � gpx1; (1)

_x2 ¼ �k�x2 1 k1x
2

1 1 k�dx � k1d0x2; (2)

_y1 ¼ 2k�y2 � 2k1y
2

1 1 smy � gpy1; (3)

_y2 ¼ �k�y2 1 k1y
2

1 1 k�dy � k1d0y2; (4)

_d0 ¼ k�dx 1 k�dy � k1d0x2 � k1d0y2; (5)

_dx ¼ k1d0x2 � k�dx; (6)

_dy ¼ k1d0y2 � k�dy; (7)

_mx ¼ axd0 1 bxdx � gmmx; (8)

_my ¼ ayd0 � gmmy: (9)

In this model, k– and k1 are the rates of unbinding and

dimerization of monomers, k– and k1 are the rates of detach-

ment and attachment of dimers to promoter sites, s is the

translational rate, ax,y and bx are transcriptional rates, gm is

the degradation rate of transcripts, and gp is the degradation

rate of proteins. Note that the total concentration of promoter

sites remains unchanged, and denote that as d ¼MC; where

M is the cellular multiplicity of infection and C is a conver-

sion factor corresponding to the molar concentration of a

single molecule in a volume equivalent to a bacterial cell, then

d ¼ d0 1 dx 1 dy is a constant throughout the dynamics.

In this complete form, mathematical analysis is impracti-

cal. Hence, we apply a nonrestrictive quasi-steady-state ap-

proximation (QSSA) to the full model (see Appendix 1 for a

detailed treatment of this derivation). In the QSSA, we take

advantage of the disparity in rates between fast and slow

processes in the gene regulatory network and assume that

other variables are determined by the slowly varying mon-

omer concentrations. We are able to derive expressions for

the rate of change of the rescaled concentrations of X and Y

free monomers, denoted here as u and v, respectively,

_u ¼M au 1 buu
2

1 1 u
2
1 v

2 � gpu; (10)

_v ¼M av

1 1 u
2
1 v

2 � gpv: (11)

The parameters au, av, and bu are rescaled rates combining

the effects of binding, transcription, translation, and degra-

dation where gp is the protein degradation rate (see Appendix 1

for definitions). Importantly, the reformulation of the model

shows that changes in the cellular multiplicity of infection,

M; directly affect the rates of transcription (in the full model

of Eqs. 1–9) and translation (in the protein-only model of

Eqs. 10 and 11). Thus, changes in the number of viruses

within a cell affect the values of key parameters in a nonlinear

dynamic model of regulatory control. Further, predictions of

steady-state expression are equivalent whether we are con-

sidering the full dynamics of promoters, mRNA, and pro-

teins, or the dynamics of proteins in Eqs. 10 and 11.

The steady-state monomer concentrations in this model,

ð�u; �vÞ; can be solved implicitly. After some analysis (see

Appendix 1), we find exact expressions forMð�uÞ and �vð�uÞ;

M¼ gp�u
1 1 �u2

au 1 bu�u
2 1

a
2

v
�u2

ðau 1 bu�u
2Þ3

� �
; (12)

�v ¼ av�u

au 1 bu�u
2: (13)

The ratio, �v=�u; shows the disparity in steady-state expressions

and is equivalent to the ratio of the actual concentrations. For

low values of �u; �v=�u is on the order of av/au, whereas for

large values of �u; �v=�u is on the order of av=ðbu�u2Þ: When

baseline production of the inhibitory protein exceeds that of

the excitatory protein (av . au), the ratio of steady-state

expression switches from high to low as �u increases. This is

the key to the origin of collective decision-making in viruses.

WhenM is low, total expression is kept at low levels and the

decision switch favors the inhibitory loop. WhenM is large,

total expression increases and the decision switch favors the

excitatory loop for which the nonlinear positive feedback

dominates.

FIGURE 1 Schematic of a bistable switch in which dimers of an excit-

atory loop (two circles with line) and an inhibitory loop (circles) compete for

the same promoter. Solid lines denote protein interactions and dashed lines

denote transcriptional events (translation not depicted).

TABLE 1 Transcription rates of mRNAs given promoter sites

that are unoccupied or occupied by either X- or Y-dimers

Occupancy x Transcription y Transcription

None ax ay

X dimer bx 0

Y dimer 0 0

The dimer Y is strictly inhibitory whereas X both represses y and activates

itself. When ay . ax the inhibitory loop is favored at low M:
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There can be at most three outcomes for this model: 1), an

inhibition-dominated regime; 2), a bistable regime; and 3), an

excitation-dominated regime (see Fig. 2). These regimes

occur for M,M1; M1 ,M,M2; and M.M2; re-

spectively (see Fig. 3). The critical values, M1 and M2;
indicate the cellular multiplicity of infection when a change

in behavior is expected. We cannot find explicit solutions for

M1;2 as a function of the parameters. However, implicit

solutions are possible since these critical points satisfy the

condition @Mð�uÞ=@�u ¼ 0 in Eq. 12. Analysis demonstrates

that when bu� au, there must be two critical points where

saddle node bifurcations occur (Y. Mileyko, R. I. Joh, and

J. S. Weitz, unpublished). First, whenM¼M1; an unstable

and stable state emerge. Next, whenM¼M2; the unstable

equilibrium collides with the other stable branch. When av .

au, there is only one possible steady state for low cellular

multiplicity of infection (M,M1), where �v� �u: Likewise,

there is only one possible steady state for high cellular mul-

tiplicity of infection (M.M2), where �u� �v: Thus, a cell’s

fate can be deterministically tuned by, in some cases, the

addition or subtraction of a few infecting viruses. In the in-

termediate regime, M1 ,M,M2; the outcome depends

strongly on stochastic effects which may drive the system to

one stable expression state or the other. Alternatively, if we

had tracked the total concentration of proteins, equal to the

sum of monomers, dimers, and bound dimers, we would find

the same critical values ofM for bifurcations.

The central elements of this model are the transcriptional

feedback and protein dimerization, as has been pointed out in

other contexts (18). Without feedback, increases in copy

number would not qualitatively change the ratio of gene

expression. Without dimerization, the ratio of gene expres-

sion would change with varying M; but the change would

not be as drastic and there would no longer be a sequence of

bifurcations. Given feedback and dimerization, the finding of

a sequence of copy-number driven bifurcations are robust to

changes in the kinetic parameters. Changes in kinetic pa-

rameters will alter features of the copy-number controlled

bifurcation, including the critical values of M where the

bifurcations occur and the relative change in expression be-

fore and after the bistable regime.

Mechanistic model of the l-phage initial
decision switch

The generic mechanism presented for a deterministically

controlled decision switch also applies in more complex

scenarios. A simplified version of the lysis-lysogeny switch

in l-phage involving genes cI, cro, and cII is presented in

Fig. 4. It is now widely believed that the ultimate fate of the

decision process in l-phage is controlled by CII. High levels

FIGURE 2 Phase plane dynamics of v(t) versus u(t) in the protein-only model of Eqs. 10 and 11 given au ¼ 0.5, av ¼ 5, bu ¼ 2.5, gp ¼ 1, andM¼ 1; 2,

and 4 respectively. Arrows denote direction of trajectories and solid circles are stable equilibria. From left to right, figures depict the three regimes of the

model where dynamics are dominated by the inhibitory pathway (v), contains alternative steady states, and are dominated by the excitatory pathway (u),

respectively.

FIGURE 3 Ratio of steady-state protein concentrations for varying cel-

lular multiplicity of infection (M) in the protein-only model of Eqs. 10 and

11 given au ¼ 0.5, av ¼ 5, bu ¼ 2.5, and gp ¼ 1. Solid lines denote stable

branches, dotted line denotes unstable branch, and circles are results of

numerical simulations given the initial conditions (u ¼ 0, v ¼ 0). There are

three regimes in this model M,M1; M1 ,M,M2; and M.M2;

where the model is dominated by the inhibitory pathway (v), contains

alternative steady states, and is dominated by the excitatory pathway (u),

respectively. The critical points M1 and M2 correspond to saddle-node

bifurcations of the model.
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of CII facilitate production of CI (and the lysogenic pathway)

whereas low levels of CII favor production of Cro (and the

lytic pathway) (3,8,11,12). The molecular mechanism pro-

posed is that the amount of CII proteins may indirectly

measure the number of infecting viruses (8). Despite exten-

sive experimental evidence that increases in coinfection

systematically switches a cell’s fate from lysis to lysogeny, as

yet there is no general theory that explains this process. In

particular, why do increases in the copy numbers of viral

genes not lead to a proportional increase in the concentration

of all components of the regulatory system in a way that their

ratios (and hence decisions) are left unchanged?

In the model proposed here, we do not consider the entire

l-phage decision circuit. Rather, we propose a simplified

model that captures critical features of the decision switch

controlled at multiple promoter sites (3). The two promoter

sites considered here are denoted as 1), PRM/PR and 2), PRE

(see Fig. 4 for more details). In addition, CI, Cro, and CII all

dimerize before binding. The rules of transcription are as

follows: 1), baseline transcription initiates at PRM/PR to make

cro and cII transcripts; 2), binding of CII at PRE leads to

transcription of cI; 3), binding of CI at PRM/PR catalyzes

transcription of cI and inhibits transcription of cro and cII; and

4), binding of Cro at PRM/PR inhibits transcription of all

genes. In reality, the PRM and PR promoters are distinct and

comprised of an overlapping set of three operator regions,

which we ignore in the interest of analytic tractability (3,20,

21).

We model this system, as before, by tracking the dynamics

of promoter, mRNA and protein concentrations. A full list of

dynamical expressions and parameter values can be found in

Appendix 2. As in the generic model, we derive equations

approximating the dynamics of protein concentration. De-

noting u, v, and w as the rescaled concentrations of CI, Cro,

and CII monomers, we find the rates of change to be

_u ¼M buu
2

1 1 u
2
1 v

2 1M duw
2

1 1 w
2 � guu; (14)

_v ¼M av

1 1 u
2
1 v

2 � gvv; (15)

_w ¼M aw

1 1 u
2
1 v

2 � gww; (16)

whereM is, as before, the cellular multiplicity of infection

and the rescaled variables are defined in Appendix 2.

The values of these rescaled parameters depend on kinetic

rates, some of which have been studied in the literature while

others have not. Generically, the CI-CII-Cro model un-

dergoes a series of saddle-node bifurcations that go from a

stable regime where Cro dominates (�v . �u) to a bistable re-

gime and back to a stable regime where CI dominates (�u . �v).

CII acts as a gate protein in this system. IncreasingM drives

the dynamic level of w past a critical point where the non-

linearity of the positive feedback in CI production leads to a

switch in behavior (see Figs. 5 and 6). These results are ro-

bust to small changes in the values of parameters, and so

many of the values in the regulatory network could be

changed and the switch would still function. As in the pre-

vious case, the system possesses only one steady state given

suitably low or high levels of coinfection. Hence, the switch

is dominated by deterministic behavior in contrast to sug-

gestions that decision outcomes must have stochastic origins

or be driven by changes in environmental conditions (6).

Parameters are chosen (see Appendix 2) such that maximal

transcriptional rates are on the order of a few transcripts per

minute per gene, maximal translation rates are on the order of

one protein for every few minutes per transcript, dissociation

constants are on the order of 107 M�1, and mRNA and pro-

tein degradation rates are on the order of 0.1 per min

(6,7,16,20). Figs. 5 and 6 demonstrate that these parameter

values can lead to a CDM-driven switch where lysis is fa-

vored at M¼ 1 and lysogeny is favored at M$ 2 in

agreement with observations (3,4,8). Peak concentrations of

CI and Cro are of the same magnitude as experimental ob-

servations (in the hundreds of molecules) (3). Quantitative

deviations are unsurprising, given the uncertainty in param-

FIGURE 4 Simplified version of the l-phage switch in which CII acts as a

gate protein between the cl and the cro pathways (3,11). In the schematic,

solid lines denote protein interactions, the dashed line denotes transcription

events that require no activation, and dashed-solid lines denote transcription

events that require activation. More details can be found in Appendix 2.

FIGURE 5 Simulated dynamics of the decision switch as a function of

multiplicity of infection, whereM¼ 1, 3, and 5. Notice that CII functions as

a gating protein. Increases inM shift CII above a critical threshold enabling

transcription of cl and coupling to the nonlinear positive feedback loop.

Values of rescaled parameters used in the numerical simulations are bu ¼
0.08, du¼ 0.06, av¼ 0.04, aw¼ 0.04, gu¼ 0.04, gv¼ 0.05, and gw¼ 0.12

all in units of min�1. More details can be found in Appendix 2.
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eters and the reduction of network complexity as compared to

the hypothesized l-phage switch. The relationship between

kinetic parameters and features of a genetic switch controlled

by copy number, including the width of the bistable regime

and the difference in the steady-state expression of the two

bistable states, are explored in a separate work (Y. Mileyko,

R. I. Joh, and J. S. Weitz, unpublished). Note also in this

model, if the degradation rate of CI is increased suddenly, as

occurs after a cell experiences DNA damage, then the lyso-

genic state becomes unstable in agreement with experiments

(3) and other numerical studies (7,10,16,22).

DISCUSSION

Living organisms exhibit a remarkable range of complex

group behaviors (23–25). Often, the number of individuals is

a key factor in determining when and if the group exhibits

functions and/or behaviors distinct from those of individuals

(24–27). Although viruses are one of the few types of orga-

nisms for which collective decision making has not yet been

proved, we have demonstrated a mechanism by which they

may do so. The finding that multiple infections can change

behavior within a cell indicates that viral infections are not

static, but rather may react to their own dynamics. This re-

sponse is, in principle, an evolvable life history trait of bac-

terial viruses conferring some selective benefit to strains

which adopt this strategy. The ecological circumstances fa-

voring lysogeny have been addressed previously, though the

issue is far from settled (28). Although l-phage often con-

stitutes the dogma for how a temperate phage behaves, mu-

tations that lead to changes in network structure, degree of

cooperativity, and kinetic rates could lead to qualitative shifts

in the exploitation strategy of a host (8). Viruses could kill at

lowM and go latent at highM; or vice versa, depending on

binding parameters in the regulatory feedback loops con-

trolling a cell’s fate. Virulent bacteriophages differ in their

life history traits (such as burst size or virion decay rate) by

multiple orders of magnitude (29), which suggests that di-

verse life history strategies may be found in temperate bac-

teriophages as well. Indeed, observations of l-phage mutants

have already shown that decision variants may in fact be

engineered (30,31).

There are many challenges remaining in the study of CDM

in bacterial viruses. First, the dynamics of intracellular

mRNAs and proteins are stochastic, and we are in the process

of evaluating stochastic versions of the current models to

evaluate the likelihood of chance outcomes in a determinis-

tically driven decision system. Next, the infection of a host

cell is rarely simultaneous. Therefore, the subsequent infec-

tion by viruses leads to discrete shifts in dynamics and in the

parameters controlling the unfolding of exploitation. In that

sense, the ecological dynamics of infection and the intra-

cellular dynamics of decision making are necessarily cou-

pled. To what extent subsequent viruses can change the

outcome of a previously infected, but not yet committed,

virus remains an open question. Finally, the decision-switch

we presented is a simplification of many complex intracel-

lular processes. Analyses of the decision switch that incor-

porate additional biological realism should retain the feature

of sensitivity toM: We expect that our finding of nonlinear

copy number effects will remain a necessary part of subse-

quent models.

Experimental tests of the effect of multiplicity of infection

on the lysis-lysogeny switch have been conducted using

plate-based assays at the population level (4) and using ex-

pression fluorescence assays of synchronously infected cell

ensembles (8). We believe that single-cell experiments are

necessary to test the nonlinear effect of copy number on

decision outcome (32,33). Simultaneous measurements of

viral coinfection level and expression dynamics will facilitate

unambiguous determination of the link betweenM and the

genetic cascade leading to lysis or lysogeny. Already, ex-

perimental monitoring of single-cell expression dynamics

has provided insight into the sequence of events that allow

the l-prophage to induce upon UV irradiation (32). Copy

number variation may affect the initial decision switch as

well as prophage induction. For example, variation in phys-

iological state will lead to dynamic changes in the number of

chromosomes within a lysogen. Such dynamic changes could

modify rates of viral gene expression affecting prophage

function in the presence and absence of cell stress (15).

The choice of whether to burst from a cell or to remain/

enter a latent state is a key feature of viruses from phages to

human pathogens. The cellular multiplicity of infection may

well play a role in shaping other viral decision processes,

even if the genetic details are different. At the very least, we

have shown here that small changes in coinfection are a

sufficient determinant of the initial lysis versus lysogeny

FIGURE 6 Bifurcation diagram for �v=�u as a function of M where solid

line is analytical curve and circles are from numerical simulations of Eqs.

14–16 given the initial conditions (u ¼ 0, v ¼ 0, w ¼ 0). Values of rescaled

parameters are the same as those used in Fig. 5.
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switch upon infection. More generally, our findings suggest

that other gene regulatory modules may depend sensitively

on copy number, by modifying kinetic rates of transcription

within a nonlinear dynamical system.

APPENDIX 1: BISTABLE SWITCH DYNAMICS
USING A QUASI-STEADY-STATE
APPROXIMATION

Consider a model of viral exploitation in which two competing regulatory

pathways share a common promoter. The network is comprised of an

excitatory and an inhibitory loop as described in the main text. We assume

that translation and transcription are the slow processes in the model and

binding and dimerization are fast. Hence, variables x2, y2, dx, dy, and d0 are

changing much faster than the rest. Therefore, we obtain a quasi-steady-state

approximation (QSSA) of the full system by setting the corresponding

derivatives to zero:

0 ¼ �k�x2 1 k1x
2

1 1 k�dx � k1d0x2; (17)

0 ¼ �k�y2 1 k1y
2

1 1 k�dy � k1d0y2; (18)

0 ¼ k1d0x2 � k�dx; (19)

0 ¼ k1d0y2 � k�dy: (20)

Since we are interested in steady states in this model we omit a more careful

treatment of prefactors involved with this QSSA as presented elsewhere (10).

Adding Eqs. 17 and 19, 18 and 20 we obtain

0 ¼ �k�x2 1 k1x
2

1; (21)

0 ¼ �k�y2 1 k1y
2

1; (22)

which implies that

x2 ¼ cpx
2

1; (23)

y2 ¼ cpy
2

1; (24)

where cp ¼ k1/k–.

Recall that the total concentration of promoter sites remains unchanged,

hence d ¼ d0 1 dx 1 dy is a constant throughout the dynamics. After some

algebra we find that

dx ¼ d
cpcdx

2

1

1 1 cpcdðx2

1 1 y
2

1Þ
; (25)

dy ¼ d
cpcdy

2

1

1 1 cpcdðx2

1 1 y2

1Þ
; (26)

d0 ¼
d

1 1 cpcdðx2

1 1 y
2

1Þ
; (27)

where cd ¼ k1/k–.

Thus, the quasi-steady-state approximation for the system has the

following form:

_x1 ¼ smx � gpx1; (28)

_y1 ¼ smy � gpy1; (29)

_mx ¼ d
ax 1 bxcpcdx

2

1

1 1 cpcdðx2

1 1 y2

1Þ
� gmmx; (30)

_my ¼ d
ay

1 1 cpcdðx2

1 1 y
2

1Þ
� gmmy: (31)

We simplify the system further by assuming transcription is faster than

translation. Setting the derivatives of mx and my to zero yields

mx ¼
d

gm

ax 1 bxcpcdx
2

1

1 1 cpcdðx2

1 1 y
2

1Þ
(32)

my ¼
d

gm

ay

1 1 cpcdðx2

1 1 y
2

1Þ
: (33)

Substituting these expressions into the equations for x1 and y1 we get the

following system:

_x1 ¼
ds

gm

ax 1 bxcpcdx
2

1

1 1 cpcdðx2

1 1 y
2

1Þ
� gpx1; (34)

_y1 ¼
ds

gm

ay

1 1 cpcdðx2

1 1 y2

1Þ
� gpy1: (35)

We then rescale the variables: u ¼ ffiffiffiffiffiffiffiffiffi
cpcd
p

x1; v ¼ ffiffiffiffiffiffiffiffiffi
cpcd
p

y1; and set bu ¼
Cbxs

ffiffiffiffiffiffiffiffiffi
cpcd
p

=gm; au ¼ Caxs
ffiffiffiffiffiffiffiffiffi
cpcd
p

=gm; and av ¼ Cays
ffiffiffiffiffiffiffiffiffi
cpcd
p

=gm: The

dynamics of the rescaled expression are

_u ¼M au 1 buu2

1 1 u
2
1 v

2 � gpu; (36)

_v ¼M av

1 1 u
2
1 v

2 � gpv: (37)

where, as noted before,M¼ d=C is the copy number of viral genes. This

system can be thought of as a protein-only model of the switch.

Continuing our derivation of steady states, we set the above derivatives to

zero:

0 ¼M au 1 buu
2

1 1 u
2
1 v

2 � gpu; (38)

0 ¼M av

1 1 u
2
1 v

2 � gpv: (39)

The second equation implies that

M
1 1 u

2
1 v

2 ¼
gp

av

v: (40)

Substituting this expression into the first equation, we get

gp

av

vðau 1 buu
2Þ ¼ gpu0�v ¼ av�u

au 1 bu�u
2: (41)

From this, we can now find the expression forM as a function of �u :

M¼ gp�u
1 1 �u

2

au 1 bu�u
2 1

a
2

v
�u

2

ðau 1 bu�u2Þ3
� �

: (42)

This function defines implicit dependence of �u onM: We can find values of

M at which @Mð�uÞ=@�u ¼ 0; which correspond to critical values where

qualitative changes in steady-state expression are expected. We only consider

monomer degradation in this and the subsequent model in Appendix 2.

Assuming only monomers degrade, only dimers degrade, or some combina-

tion of those scenarios does not change any of the qualitative features of our

results.
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APPENDIX 2: DYNAMICS OF CI-CII-CRO

The dynamics of the CI-CII-Cro system as depicted in Fig. 4 of the main text

are:

_x1 ¼ 2k
ðxÞ
� x2 � 2k

ðxÞ
1

x
2

1 1 smx � gxx1; (43)

_x2 ¼ �k
ðxÞ
� x2 1 k

ðxÞ
1

x
2

1 1 k
ðxÞ
� dx � k

ðxÞ
1

d0x2; (44)

_y1 ¼ 2k
ðyÞ
� y2 � 2k

ðyÞ
1

y
2

1 1 smy � gyy1; (45)

_y2 ¼ �k
ðyÞ
� y2 1 k

ðyÞ
1

y
2

1 1 k
ðyÞ
� dy � k

ðyÞ
1

d0y2; (46)

_z1 ¼ 2k
ðzÞ
� z2 � 2k

ðzÞ
1

z
2

1 1 smz � gzz1; (47)

_z2 ¼ �k
ðzÞ
� z2 1 k

ðzÞ
1

z
2

1 1 k
ðzÞ
� ez � k

ðzÞ
1

e0z2; (48)

_d0 ¼ kðxÞ� dx 1 kðyÞ� dy � kðxÞ
1

d0x2 � kðyÞ
1

d0y2; (49)

_dx ¼ k
ðxÞ
1

d0x2 � k
ðxÞ
� dx; (50)

_dy ¼ k
ðyÞ
1

d0y2 � k
ðyÞ
� dy; (51)

_e0 ¼ �k
ðzÞ
1

e0z2 1 k
ðzÞ
� ez; (52)

_ez ¼ k
ðzÞ
1

e0z2 � k
ðzÞ
� ez; (53)

_mx ¼ bxdx 1 dxez � gmmx; (54)

_my ¼ ayd0 � gmmy; (55)

_mz ¼ azd0 � gmmz: (56)

Using a sequence of quasi-steady-state approximations in which we integrate

over processes of dimerization, binding, and mRNA production, the model

can be reduced to a protein-only dynamic model of x, y, and z monomer

concentration. Here we relax the assumption that dimerization and binding

constants are identical for each protein. In analogy to the two-protein system

derived in the main text, the model equations are

_x ¼
MCbxs=gmðc

ðxÞ
p c

ðxÞ
d x

2Þ
1 1 cðxÞp cðxÞd x2

1 cðyÞp cðyÞd y2
1
MCdxs=gmðc

ðzÞ
p c

ðzÞ
d z

2Þ
1 1 cðzÞp cðzÞd z2

� gxx;

(57)

_y ¼ MCays=gm

1 1 c
ðxÞ
p c

ðxÞ
d x

2
1 c

ðyÞ
p c

ðyÞ
d y

2
� gyy; (58)

_z ¼ MCazs=gm

1 1 c
ðxÞ
p c

ðxÞ
d x

2
1 c

ðyÞ
p c

ðyÞ
d y

2
� gzz; (59)

where c
ðxÞ
p ¼ k

ðxÞ
1 =kðxÞ� ; c

ðxÞ
d ¼ k

ðxÞ
1 =kðxÞ� ; and likewise for y and z. In addition,

hereM denotes the integer multiplicity of infection and C is the conversion

factor for representing operator concentrations in molar units. As before, the

number of promoter sites are given as

d0 1 dx 1 dy ¼ e0 1 ez ¼MC: (60)

Note that converting from concentrations to estimates of molecules per cell

has been calibrated based on an assumption of cell volumes on the order of

1 – 2 3 10�15 L. Hence, the number of molecules in a bacterial cell is equal to

the molar concentration divided by C. The dynamic factors involved in

tracking the total protein concentration have been studied for the quasi-

steady-state approximation in other contexts (10). Importantly, they do not

alter the predictions regarding steady-state behavior.

We propose the following rescaling of this model: u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðxÞ
p c
ðxÞ
d

q
x1;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðyÞ
p c
ðyÞ
d

q
y1; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðzÞ
p c
ðzÞ
d

q
z1; bu ¼ Cbxs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðxÞ
p c
ðxÞ
d

q
=gm; du ¼

Cdxs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðxÞ
p c
ðxÞ
d

q
=gm; av ¼ Cays

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðyÞ
p c
ðyÞ
d

q
=gm; aw ¼ Cazs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðzÞ
p c
ðzÞ
d

q
=gm;

gu ¼ gx, gv ¼ gy, and gw ¼ gz. Using this rescaling we recover the model

in Eqs. 14–16 in the main text. Parameter estimates are approximate. They

are in range with experimental measurements and typical values for dimer-

ization, binding, transcription, translation and degradation in bacteria and

viruses. The approximate kinetic values are as follows (7,16,20): c
ðxÞ
p � 107

M�1, c
ðyÞ
p � 107 M�1, c

ðzÞ
p � 107 M�1, c

ðxÞ
d � 107 M�1, c

ðyÞ
d � 107 M�1,

c
ðzÞ
d � 107 M�1, bx � 1.6 min�1, dx � 1.2 min�1, ay � 0.8 min�1, az � 0.8

min�1, s � 0.5 min�1, gm� 0.1 min�1, gx� 0.04 min�1, gy� 0.05 min�1,

gz� 0.12 min�1, and C� 10�9 M. Here the degradation of CII is higher than

either CI or Cro, in part due to the instability of the protein and the need for

other components such as CIII that prevent its degradation by bacterial

proteases (3). Importantly, model behaviors are robust to small changes in

these parameters, and, in particular, to changes in the rescaled values of bu,

du, av, aw, and the degradation rates gu,v,w.
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