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Review
Phage and their bacterial hosts are the most abundant
and genetically diverse group of organisms on the plan-
et. Given their dominance, it is no wonder that many
recent studies have found that phage–bacteria interac-
tions strongly influence global biogeochemical cycles,
incidence of human diseases, productivity of industrial
microbial commodities, and patterns of microbial
genome diversity. Unfortunately, given the extreme di-
versity and complexity of microbial communities, tradi-
tional analyses fail to characterize interaction patterns
and underlying processes. Here, we review emerging
systems approaches that combine empirical data with
rigorous theoretical analysis to study phage–bacterial
interactions as networks rather than as coupled interac-
tions in isolation.

Phages: key components of complex microbial
communities
Historically, the study of phages facilitated important
advances in molecular biology [1]. More recently, the dis-
covery of high levels of viral abundance and diversity in
natural environments has sparked the burgeoning field of
‘viral ecology’ [2–4]. Viruses, including phages and viruses
of microeukaryotes, are thought to have key effects on
microbial ecosystems. For example, viruses are responsible
for an estimated 20–40% of marine microbial mortality [3].
Viral-induced lysis of microbes redirects organic matter
back into the microbial loop and away from zooplankton
and fish [5,6]. Viral infection also facilitates gene transfer
both among phages and their hosts, thereby contributing to
the webbed architecture of the tree of life [7]. In addition,
phages may also impact human health, for example, by
altering the fate of pathogenic bacteria such as Vibrio
cholerae [8], or by interacting with bacteria found in the
human microbiome [9,10].

However, despite the increasing recognition that
phages play a significant role in shaping microbial eco-
systems, fundamental questions remain unanswered. For
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example: which phages infect and exploit which hosts in
complex communities? Quantifying who infects whom is
essential to understand how infections at the cellular
level (such as changes to metabolic rates, gene transfer,
and the fate of cells) scale-up to influence ecosystem
function in complex environments. Here, we synthesize
approaches and findings from multiple disciplines to clar-
ify the roles of ecological and evolutionary processes in
structuring phage–bacteria infection networks (PBINs).
In so doing, we highlight the ways in which a better
understanding of PBINs will further predictive models
of viral effects on microbial communities, from micro-
biomes to the Earth system.

Defining PBINs
Cross-infection of phage isolates against a panel of bacte-
rial isolates is a microbiological tool used for many pur-
poses, including the identification of pathogenic strains,
analysis of strain-specific lysis in complex communities,
and characterization of coevolutionary dynamics. In prac-
tice, the host range of a given phage type is determined
using infection tests such as spot assays. In a spot assay, a
small sample of phages from pure culture is added to a
bacterial lawn and infection is marked as positive if a
clearing is observedy.

Phages can infect individual hosts from different species
and even different genera, as in the case of cyanophages
infecting Prochlorococcus and Synechococcus [11]. In some
cases, a given phage may infect only one strain of bacteria
from a given sample. However, cross-infection is commonly
observed and the emergent patterns resulting from the
cross-infection of multiple phages and multiple hosts can
be challenging to interpret. The difficulty in interpretation
arises, in part, due to the many possible ways to represent
cross-infection studies. For example, a cross-infection ma-
trix involving 20 hosts, one per row, and 20 viruses, one per
column, could be represented in approximately 6 � 1036

ways [there are 20 hosts to choose from for the first row,
then 19 for the second row, and so on; the same holds for the
y Note that the majority of studies utilizing spot assays have focused, as we have, on
antagonistic relationships. However, the lysogenic mode of interaction warrants
further attention using the methods reviewed and synthesized here.
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Box 1. Key types of PBINs

The four key types of PBINs are: random, one-to-one, nested, and

modular (Figure I).

Random: the pattern of who infects whom is not statistically different

than what would be expected if cross-infection occurred by chance.

One-to-one: an infection network with elevated specialization, such

that each phage can only infect one host, and each host is only

infected by one phage.

Nested: a PBIN that contains interactions that form a hierarchy for

both phages and hosts. Consider the case of a maximally nested PBIN

with S host and S phage types (see Figure I for an example in the case

of nine hosts and nine phage types). A perfectly nested PBIN is one in

which both bacteria and phages can be ordered from 1 to S: in this

ordering, bacterium 1 is the type most difficult to infect (i.e., only one

of the S phages can infect it) whereas bacteria S is the most

permissive to infection (i.e., all of the S phages can infect it). The next

most permissive bacteria can be infected by all but one phage, and so

on. Similarly, in this ordering, phage S is a generalist and can infect

all S bacteria whereas phage 1 is a specialist and can only infect one

bacterial type. The next most specialized phage infects the two most

permissive bacteria, and so on.

Modular: a PBIN that contains interactions that tend to occur among

distinct groups of phages and hosts. Consider the case of a maximally

modular PBIN with S host and S phage types (see Figure I for an

example). In this case, all infections occur between phages and

bacteria in the same group (i.e., ‘module’) rather than between

groups. There are three modules in the example in Figure I. A module

is a group of phages and hosts for which the phages in the set are

more likely to infect the hosts in the group, and likewise, that the

hosts in the group are more likely to be infected by phages from

within the group. For any given size of a PBIN, the maximally modular

configuration would be one in which the infections occur between

phages and hosts within the same module.
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Figure I. Paired schematics of four PBINs. Top, network representation; bottom, matrix representation. Infections between phages and bacteria are represented as black

lines (top) and as black cells (bottom).
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placement of viruses in columns, that is, the total is equal
to (20 � 19 � 18 � . . . � 3 � 2 � 1)2]. Some of these
representations may be more informative than others for
revealing regularities and patterns in who infects whom.

Network-based approaches have recently been proposed
to help unify and shed light on the quantitative analysis of
the cross-infection of multiple phages with multiple bacte-
ria [12,13]. Within a PBIN, phages and bacteria are repre-
sented as nodes. An edge between a phage node and a
bacterium node indicates the ability of that phage strain to
infect and lyse that host strain (Box 1). Similar networks
have been used to describe interactions in other branches
of ecology, for example, food webs [14] and plant–pollinator
networks [15]. Networks facilitate the representation and
analysis of diverse systems, particularly when there are far
fewer realized interactions than potential interactions
2

[16]. Moreover, a diversity of methods are available to
analyze network structure and its consequences, many
of which we highlight in this review (see [17] for a broad
overview of network science). In doing so, one of the
primary objectives of network analysis is to identify pat-
terns within a network that are not necessarily expected by
chance.

Nestedness and modularity: hypothesized signatures of
coevolutionary mechanisms
The two most frequently examined patterns in ecological
networks are nestedness and modularity [18]. Nestedness
is characteristic of PBINs that have a hierarchy of resis-
tance among hosts and infection ability among phages.
Likewise, modularity is characteristic of PBINs in which
bacteria and phages preferentially cross-infect within



Matching allele

M
uta�

onM
ut

a�
on

M
uta�

onM
ut

a�
on

Gene-for-gene

Diffuse coevolu�on

Muta�on

(c)

(a) (b)

TRENDS in Microbiology 

Figure 1. Schematic examples of three modes of coevolution and their effect on

cross-infection. In all cases, edges (black lines) represent infections between phage

and host types (circles). The three modes are (a) gene-for-gene coevolution; (b)

matching allele coevolution; (c) diffuse coevolution. Note that in all cases evolved

strains can differ in their host range (in the case of viruses) and phage

susceptibility (in the case of hosts).
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groups or ‘modules’. In Box 1, we elaborate further on the
definition and interpretation of these concepts.

The nested pattern in evolutionary PBINs is hypothe-
sized to result from a sequence of adaptations that are
arbitrated by gene-for-gene processes [19,20]. In a dynamic
gene-for-gene coevolutionary sequence, new bacterial
mutations confer bacterial resistance to recently evolved
phages while maintaining resistance to past phages
(Figure 1a). Likewise, mutations for host range expansion
among phages evolve without losing the ability to infect
ancestral host genotypes. Hence, the set of hosts that a
phage can infect are ‘nested’ across a sequence, that is, the
host range of phages are subsets of each other. The same
nesting applies to hosts, that is, the phage susceptibility of
hosts are subsets of each other.

An alternative model of phage–host coevolution posits
that phages must have alleles that facilitate infection
against specific bacterial defensive alleles (Figure 1b).
Hence, in the simplest matching allele model [20], bacteria
evolve resistance to a single phage genotype and lose any
evolved resistance to other phages, whereas phage muta-
tions confer infection against single strains of bacteria at
the cost of entire loss of infectivity against ancestral
strains. Specialization is promoted by the interaction ge-
netics and selection in this coevolutionary model, possibly
in a successive fashion in time resembling a Red Queen
dynamic [21]. In a Red Queen sequence, each interacting
organism (in this case a phage and a host) evolves, leading
to lineages whose genomes are changing but yet never able
to escape from interactions with their evolving partner.

Both the gene-for-gene and matching allele models are
idealizations and intermediate mechanisms are possible
by which phages evolve the ability to infect new hosts and
(partially) lose the ability to infect existing hosts [20]. For
example, there is evidence of trade-offs in which evolved
phages suffer fitness costs in terms of the productivity of
infecting the ancestral host [22]. Moreover, neither the
gene-for-gene nor matching allele models account for larg-
er pre-existing variation in a community, corresponding to
coevolution in multi-species and/or multi-strain communi-
ties (Figure 1c). This process has been termed diffuse
coevolution [23]. Regardless of mechanism, these coevolu-
tionary ‘steps’ affect the dynamical emergence of cross-
infection networks. Observed cross-infection networks are
complex and do not, in general, have a perfectly nested or
modular structure [24].

The analysis of modularity and nestedness requires (i)
methods to estimate the importance of such patterns and
(ii) a critical assessment of statistical significance, that is,
do these patterns signal ecological and evolutionary dri-
vers or could they have resulted by chance? We provide a
description of how to estimate nestedness and modularity
in Figures 2 and 3, respectively. In Box 2, we describe how
the statistical significance of these patterns is calculated so
as to provide background for potential users. Next, we
evaluate patterns found in PBINs derived from ecological
and experimental studies.

Cross-infections in the environment
Cross-infections between viruses and hosts in natural
environments have been investigated for decades, without
a consensus on patterns and associated mechanisms. Re-
cently, 38 published PBINs spanning 20 years of research
and nearly 12 000 individual phage–bacterial strain infec-
tion trials were aggregated and re-analyzed [12]. The
majority of ecological studies assembled in this re-analysis
included phages and hosts collected at different sites from
within similar environments. Hence, PBINs measured in
this way provide information on interactions within ‘meta-
communities’ [25], that is, a set of communities potentially
linked by dispersal. The re-analysis identified many PBINs
that have a previously unrecognized nested structure (see
Figure 4a,b for two examples). What are the drivers of
these patterns?

First, taxonomy is known to be strongly associated with
infection outcome. In instances where taxonomic identity
is available, phage isolates from different clades can differ
in host range and specificity. For example, Wichels and
coworkers [26] found that phages of the clade Myoviridae
have broader host ranges than Siphoviridae, which have
broader ranges than Podoviridae. The host ranges of these
viruses were further found to be nested. From the host
perspective, variation in susceptibility to infection can
occur within a clade. Despite being highly related, envi-
ronmental isolates of the heterotrophic Cellulophaga bal-
tica, a Flavobacteriaceae from the Bacteriodes phylum,
show variable phage-susceptibility patterns consistent
with a nested structure [27]. However, differences in sus-
ceptibility can also facilitate the grouping of hosts and
phages into modules (e.g., Figure 4c,d). For example, Sul-
livan and colleagues [11] studied host isolates from multi-
ple cyanobacteria genera, including Synechococcus and
Prochlorococcus, and found that phages preferentially
infected one of the two genera. Hence, the infection pattern
will be, in part, a consequence of taxonomic diversity in the
sample set. Further aggregation of studies will help to
define patterns characteristic of cross-infection among
3
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Figure 2. Methods to calculate nestedness. Two widely used methods are the temperature calculator (NTC) [74] and the overlapping fill method (NODF) [75]. We illustrate

these methods, in panels (a) and (b) respectively, using a phage–bacteria infection network (PBIN) derived from interactions between Streptococcus thermophiles and

associated phages [54]. Nestedness algorithms such as NTC and NODF take a PBIN as input and return a nestedness value between N = 0 (non-nested, i.e., there is not an

ordering of infection and resistance) to N = 1 (perfectly nested, i.e., there is a perfect ordering of infection and resistance). (a) In NTC, the steps are: (1) rows and (2) columns

are sorted in descending order of host susceptibility (the numbers alongside rows denote the number of phages that can infect a host) and phage infectivity (the numbers

below columns denote the number of hosts that a phage can infect). Then, (3) an isocline is found corresponding to the arrangement of infections if the matrix were

perfectly nested – in such a case, all infections would be in the upper left region, above the blue line. (4) Interactions that deviate from perfect nestedness are identified,

including infections that do not occur, but are expected given perfect nestedness (see upper left red squares with white centers) and infections that do occur but are not

expected given perfect nestedness (see lower right red squares with black centers). (5) A numerical weight is assigned to each unexpected interaction, such that they are

weighted based on the relative distance of exceptions to the isocline dij versus the off-diagonal distance Dij. More details can be found in [74]. (b) In NODF, rows and

columns are compared pairwise for all pairs of hosts and phages, respectively. The overall nestedness is the normalized sum of the contribution to nestedness made by

each pairwise comparison. The pairwise nestedness contribution can be 0, 1, or some intermediate value. The contribution is 0 when there is no overlap between sets of

infections (middle left) or when the sets of infections have the same degree (bottom left). The contribution is 1 when one set of infections is a subset of the other set (bottom

right). The contribution is at some intermediate value when there is partial overlap between sets of infections, so long as the sets of infections each have a different degree

(middle right). These scenarios are noted as null, full, and partial contributions, respectively. More details can be found in [75].
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phages infecting hosts of different taxa. We might expect
that large taxonomic diversity would ultimately promote
modularity. However, taxonomic diversity is, alone, insuf-
ficient to explain network patterns. Eco-evolutionary fac-
tors governing selection for cross-infection may result in
different emergent patterns.

Second, PBINs are associated with the spatiotemporal
scale over which they are collected. Recent studies involv-
ing systematic cross-infection of phages and hosts from
multiple sites, for example, soil and tree-associated com-
munities, suggest that phages preferentially infect hosts
from the same site more so than hosts isolated from similar,
but ‘distant’ sites [28,29]. This finding is consistent with
4

biogeographic studies that find that the species composi-
tion of communities grows more dissimilar with increasing
geographic and environmental distance [30]. Nonetheless,
many studies (including [28,29]) also find cross-infections
that transcend site and time of isolation. As but one
example, a study in marine waters identified positive
cross-infection between a phage isolate f19:2 (unknown
family, isolated in February 2000 in Øresund surface wa-
ter, 568200N, 1283700E) with an isolate of Cellulophaga bal-
tica denoted OL12A (isolated in April 2005 in Baltic Sea
surface water, 5683700N, 1684500E). Hence, phage f19:2 is
able to infect a host isolated >200 km and 5 years after the
initial phage isolation [27]. Many similar examples can be
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Figure 3. Method to calculate modularity. We utilize the Bipartite, Recursively

Induced Modules (BRIM) method for modularity of ‘bipartite’ networks (i.e., those

in which there are two types of agents, like phages and bacteria; [76,77]). BRIM

attempts to decompose a matrix into a certain number of modules, c. We illustrate

how BRIM works using the phage–bacteria infection network (PBIN) of [56] (middle

left panel). The optimal number of modules is one in which interactions occur

frequently inside the module and infrequently outside the module. We evaluated

alternative possibilities, and find the maximal modularity (Q = 0.682) occurs when

c = 8 (top panel). In so doing, we reject c = 1 (middle left panel) and c = 2 (middle

right panel) because interactions within a module occur too infrequently. Similarly,

we reject c = 16 (bottom right panel) because interactions outside of modules occur

too frequently. The finding of c = 8 modules (lower right panel) maximizes the

extent to which interactions frequently occur within modules and rarely occur

outside of modules. In all four matrix panels, black squares denote interactions

within a module and gray squares denote interactions outside of a module. In

general, the modularity Q spans cases where interactions occur more frequently

within modules than expected by chance (0 < Q � 1), no differently than what

would be expected by chance (Q = 0), to less frequently within modules than what

would have been expected by chance (–1 � Q < 0).
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identified. Infections of hosts via phages that span large
spatiotemporal separations could imply strong stabilizing
selection of host defense mechanisms and/or the loss of
resistance mechanisms [31]. Such infections could also
represent instances of fluctuating selection where phages
and hosts recur in communities after undergoing severe
drops in population abundance or even local extinction [32].

In addition, environmental factors such as nutrient
stress, host physiological state, and ambient temperature
can affect individual virus–host infections [33]. A promi-
nent example can be found in an analysis of phages infect-
ing strains of Vibrio spp. in the Georgia Strait [34]. In this
study, Comeau and colleagues showed that the similarity
of ecological conditions in which hosts were sampled (e.g.,
depth, presence of cultivated oysters, and temperature)
predicted the variation in susceptibility to infection by
phages more so than did distance between sampling sites.
Similarly, an experiment using lytic phages of soil Pseudo-
monas [13] showed that most network metrics changed
following an artificial alteration of the environment (in this
case, changes in resource availability). Hence, environmen-
tal conditions affect individual phage–host interactions as
well as the overall mode of interaction at the community
scale. In the future, it will be important to disentangle the
effect that environmental conditions have on community
composition, thereby affecting network patterns, from the
effect that environmental conditions have on network pat-
terns given the same community composition.

Tracking infection structure in experimental evolution
Complex cross-infection patterns emerge via the interplay
of ecological and biogeographic factors (as discussed in the
previous section) as well as via coevolutionary processes.
Coevolution is a potent driver of taxonomic and functional
diversity in natural communities [35]. The ease of use of
phage–bacteria systems [36,37] has made them increas-
ingly popular as experimental models for coevolution
[29,37–42] and as the basis for theoretical models of the
interplay between ecology and evolution [24,43–45].

Indeed, classic genetic studies, including those con-
ducted by Luria, revealed the first glimpses of how phage
and bacterial interactions coevolve. Multiple serial trans-
fers of bacteria and phages led to what we would denote as
small infection networks ranging from two phages by two
hosts to 18 phages by three hosts [46–48]. What was
striking is that all of the networks identified by these
researchers possessed the same highly nested pattern,
despite being generated with different Escherichia coli
phages (T2, T4, and l). Phages evolved expanded host
ranges and were able to infect past hosts. Likewise, bacte-
ria evolved resistance to the newly evolved phages and
maintained resistance to past phages leading to a nested
pattern. It is important to note that the nested pattern is
most often observed when evaluating cross-infection of
hosts and viral strains isolated at different points in an
experiment.

This early work has been confirmed by recent studies
using serial transfer coevolutionary experiments with
Pseudomonas fluorescens and associated phage [41] as well
as E. coli and its phage [42]. However, even though nested
evolutionary PBINs are commonly observed in controlled
environments that tend to have abundant resources, they
may not emerge in low-resource settings. For example, it
has been hypothesized that mutations that cause ever-
increasing host ranges and defenses would not be selected
in depauperate culture conditions if broad-spectrum resis-
tance or host ranges are costly, as classic trade-off theory
predicts [49,50]. Instead, one would expect more special-
ized interactions to evolve since both resistance to past
phages (by hosts) and the ability to infect extinct or rare
hosts (by phages) would be costly.

Fortunately, many studies on coevolution in more nat-
ural continuous culture have been performed on a variety
of bacteria-phage pairs (E. coli and phages T2, T3, T4, T5,
T7, PP01, and l as well as P. fluorescens and w2) and
produced PBINs of a range of sizes (including a few isolates
5



Box 2. Methods to find significant patterns

The analysis of modularity and nestedness requires a critical assess-

ment of statistical significance, that is, are these patterns signaling

ecological and evolutionary drivers or are they dominated by chance?

To do so requires comparing the pattern found in a PBIN (as seen in

Figure IIa, taken from [80]) to the range of patterns found in a suitable

null model. The PBIN depicted here includes H = 18 hosts, P = 8 phages,

and I = 54 cross-infections. Two widely utilized null models to measure

the statistical significance of patterns in a PBIN are the Bernoulli

random network and the probabilistic degree network. Both null

models have the same size as the original PBIN and both null models

have the same number of interactions, on average, as the original PBIN.

However, the null models differ in the assumptions they make in

randomizing the location of positive interactions.

The Bernoulli random network null model takes the original matrix

and randomly reshuffles positive infections so that the total number

of infections is conserved (Figure IIb). The probabilistic degree

network null model takes the original matrix and reshuffles positive

infections while maintaining the same ‘degree distribution’, on

average, of both phages and hosts while reshuffling (Figure IIc). The

‘degree’ of a host is the number of phages that infect it (see the

numbers associated with each row in panels a–c), whereas the degree

of a phage is the number of hosts it infects (see the numbers

associated with each column in Figure II). To contrast the two

methods, consider the red and blue outlined matrix elements in the

original PBIN on the left. In a Bernoulli random network, the

probability of a 1 being assigned is: I/(HP) = 54/(18*8) = 0.375. Hence,

the probability of an infection event in a Bernoulli random network

will be the same for all possible interactions. In a probabilistic degree

network, the probability of a 1 being assigned to an interaction

between host i and phage j is kikj/(HP), where ki and kj are the number

of phages that infect host i and the number of hosts that phage j can

infect, respectively. Hence, the red square in the matrix Figure IIc has

a probability of (5*8)/(18*8) � 0.28, and, the blue square in the matrix

in Figure Ic has a probability of (5*2)/(18*8) � 0.07.

Given this, the significance of the measured value of nestedness, N,

and modularity, Q, in the original PBIN can be compared to either of

these null models as follows: (i) generate a large number of matrices

following the rules of the null model, the inverse of the number of

matrices determines the lowest possible calculated significance

value; (ii) calculate the nestedness and modularity of the resulting

matrices; (iii) compare the true value of N and Q to the distribution of

nestedness and modularity values measured from the null models.

The choice of the appropriate null model affects whether nestedness

and/or modularity will be considered significant. We recommend, as

best practice, reporting the algorithm used, significance values, and

the choice of the null model.
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Figure II. Empirical infection compared to null models. (a) PBIN. (b) Bernoulli

random network null model. (c) Probabilistic degree network null model.
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to a few dozen isolates) to test the idea that specialization is
linked to resource supply [12,19,24,40,51]. Even though
increased resistance and host range are often found to have
fitness costs, virtually all of these studies were at odds with
the prediction of specialization, and produced nested
PBINs as observed in the earlier studies. One notable
exception is P. fluorescens coevolving with the phage w2
that produces both nested and modular PBINs depending
on growth conditions [39]. Consistent with the hypothesis
that specialization is linked to resource-limited environ-
ments, modularity evolves in resource-poor environments
where pleiotropic costs of host range resistance mutations
are expected to be higher [39]. Further investigation of the
link between genetic constraints and environmental fac-
tors is warranted.

Resistance mechanisms and environmental drivers act
synergistically to determine patterns of cross-infection
Cross-infection at the community scale depends on the
underlying genetics of defense and counter-defense mecha-
nisms, but also on the ecological context in which evolution
unfolds. The central difficulty in making the link between
experimental and ecological studies is the relative paucity of
biotic and abiotic diversity in laboratory evolutionary stud-
ies versus that commonly found in natural communities.

Host-switching experiments have been proposed to
directly evaluate the effect of including larger taxonomic
diversity on evolutionary PBINs. For example, mutations
within phages are found to expand the viral host range
to include new species when phages are cultured on
6

alternating species (w6 from Pseudomonas syringe to Pseu-
domonas pseudoalcaligenes and w�174 between Salmo-
nella enterica and E. coli) [22,52,53]. These mutations
have negative pleiotropic effects on infecting the original
host, though the underlying genetic mechanisms remain
unclear. The negative pleiotropic effects drive the evolu-
tion of specialist phages that preferentially infect one
species over another, that is, they lead to modular PBINs
[22,52,53]. Whether or not such a result extends to even
greater taxonomic diversity, as would be expected in
natural systems, remains unknown.

Finally, it is important to keep in mind that environmen-
tal context matters even when a given resistance mecha-
nism can be associated with a certain class of pattern. For
example, a number of PBINs with elevated modularity
identified in a recent meta-analysis come from communities
dominated by Streptococcus thermophilus hosts [54–56] (see
Figure 4 for an example). S. thermophilus possesses the
phage-resistance mechanism of Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPR)-Cas defense
[57–59]. This defense mechanism is predicated on the ho-
mology of short sequences in the host genome with corre-
sponding sequences in the infecting virus; hence modularity
might be possible if groups of hosts possess distinct
sequences that occur exclusively in subsets of sampled
phages. Despite examples for which coevolution is appar-
ently driven by selection both for and against CRISPR
resistance [60–62], the conditions under which CRISPR-
Cas defense predominates in the environment remains
unknown. Hence, multiple explanations exist for similar
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Figure 4. Phage–bacteria infection network (PBIN) structure revealed through network analysis. Two examples of PBINs that have significantly elevated nestedness, not
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patterns – in this case modularity – highlighting the chal-
lenge and need to disentangle genetic and environmental
drivers when considering the basis for and effects of complex
cross-infection.

Directions for future research
As we have shown, the use of network approaches has
enabled the discovery of more complex structures within
PBINs than previously appreciated. Non-random patterns
have been identified within interaction networks in other
biological domains including food webs, plant–pollinator
networks, and metabolic networks [14–17,63]. However, as
in these other domains, the question remains: how does
measuring and quantifying a PBIN help advance our
understanding of key biological questions? We discuss
three directions for future research.

Predicting who infects whom in microbial communities

There are many factors that influence which phages can
infect and exploit which bacterial hosts in a given envi-
ronment. Thus far, the analysis of PBINs has focused
largely on groups of bacteria and phage that are relatively
closely related, for example, most of the PBINs that have
been analyzed include congeneric bacteria. We are not
aware of studies providing definitive evidence for whether
there are critical scales in phylogenetic distance that lead
to rapid drop-offs in cross-infection, for example, can the
same phage infect bacteria from different families, orders,
or classes? A reductionist view would build from the bottom
up, that is, investigating the links between the molecular
details of multiple classes of phage-resistance mechanisms
[21,64]. This is worth pursuing but necessarily limited by
our lack of genetic models for all but a few systems.
Moreover, we should anticipate that environmental dri-
vers of cross-infection can manifest themselves at the
community scale, as noted above. Unlike many laboratory
systems, bacterial hosts interact with multiple strains of
phages in natural environments. These phages may be
intracellular competitors [65] and/or be beneficial to the
host [66]. The bacteria–phage relationship may itself be
intertwined with other ecological interactions, such as
competition and defense against grazing. We suggest that
the integration of molecular models of resistance with
evolutionary models of selective pressures will be neces-
sary to predict the outcome of infection, whether at the
cellular or community scale. Such integrated approaches
are also likely to shed light on taxonomic or other signa-
tures that determine the likelihood of cross-infection.
7



Box 3. Outstanding questions

� What properties of PBINs influence microbial community assem-

bly and ecosystem functioning?

� Can properties of PBINs be used to predict the fate of bacteria and

phage populations?

� How do environmental perturbations, such as climate change,

alter PBIN structure?

� Are some forms of interaction networks more resilient than others

to biotic and abiotic perturbations?

� What underlies the finding of nestedness in PBINs? Are nested

patterns a byproduct of the coevolutionary process? Is there an

ecological force selecting for this structure, or is nestedness a

biophysical necessity?

� What forms do PBINs take when sampled over larger phyloge-

netic and geographic scales?

� What is the structure of interactions among bacteria and phages

using culture-independent methods? Do they differ from patterns

identified using culture-based approaches?
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Effects of PBINs on microbial community structure and

function

There is increasing evidence that PBIN structure is asso-
ciated with ecological properties of microbial communities
and ecosystems. A combined theoretical and experimental
study considered how nested versus modular networks
yield different patterns of biodiversity across a gradient
of resource availability [24]. PBINs of modular patterns
yielded an increase in bacterial diversity with resource
availability, while nested patterns show a unimodal rela-
tionship with resource availability. Interestingly, with
little awareness of this network approach, cheese and
yogurt manufacturers have favored the creation of modu-
lar microbial communities rather than nested communi-
ties in order to create more stable and productive bacterial
cultures. This practice, known as ‘phage unrelated’ cultur-
ing, involves co-culturing bacteria that have distinct phage
sensitivity profiles in order to create robust bacterial com-
munities [67]. Along these lines, laboratory experiments
have shown that by introducing resistant hosts into micro-
bial host–parasite systems, the population growth of the
host is improved [68], and population dynamics and envi-
ronmental stoichiometry of the systems are altered [69].
While some progress has been made in understanding how
PBINs are associated with the ecology of microbial com-
munities, more work is required where PBINs are directly
manipulated and suites of ecological properties monitored
to identify possible causative mechanisms and/or feed-
backs between structure and function. Ecosystem proper-
ties to examine should include, for example, the storage,
export and regeneration of carbon and nutrients as medi-
ated by viruses, that is, the ‘viral shunt’ [5,6]. Doing so will
further our understanding of how cross-infection patterns
can lead to differential levels of antagonism or even ben-
efits to bacteria in complex communities.

Technological innovations to study phage–bacteria

interactions

Existing PBINs from microbial communities include cross-
infections of tens of phage and host strains. However these
communities have many orders of magnitude more indi-
viduals and, likely, orders of magnitude more strain types.
Isolation-based approaches will, by necessity, provide in-
complete information on the interactions between environ-
mental viruses and their hosts. Several emerging, new
methods promise to help us delve deeper into various
aspects of virus–host interactions in myriad ways. First,
whole genome re-sequencing now allows the identification
of resistance mutations in phage–host systems whose ge-
netics is poorly understood, a common issue for ecologically
important systems [70]. Second, single virus genomics
promises high-throughput exploration of environmental
phage genome sequence space without shearing communi-
ty DNA into shotgun fragments such that we can re-
assemble significant chunks of genomic sequences if not
whole genomes [71]. Third, where sequence data are al-
ready available for a given environment, researchers can
now develop primers or probes to match uncultured viruses
to their hosts in wild populations by screening for coloca-
lized virus and host signals using microfluidic digital PCR
[72]. Fourth, the genomic analysis of CRISPR-associated
8

sequences may provide a direct method to identify prior
interactions with viruses in complex communities [60–62].
Finally, a new ‘viral-tagging’ method uses a fluorescent
stain to label wild viruses in combination with flow cyto-
metry to provide a sequence-independent means for exper-
imentally linking wild viruses en masse (i.e., tens of
thousands at a time) to a cultured host cell [73]. Hence,
viral tagging provides a means to examine the PBIN of a
microbial community in a given environment, in contrast
to prior efforts that aggregate cultured isolates of bacterial
and viral isolates from a metacommunity. Together these
methods promise rapid and significant advances in our
ability to generate virus–host interaction data, including
moving from PBINs with qualitative information to PBINs
with (semi)quantitative information. These developments
necessitate new analytical and theoretical frameworks to
maximize their potential. A subset of the current authors
(T.P., C.O.F., S.V., and J.S.W.) are part of a consortium of
developers of BiWeb (https://github.com/tpoisot/BiWeb), a
multi-platform software tool for the analysis of bipartite
networks, of which PBINs are one prominent example.
This is but one example of the type of theoretical advance
that will be required to enable microbiologists to examine
and analyze functional interaction data.

Concluding remarks
We have synthesized and reviewed the study of complex
patterns of infection between phages and bacteria via the
unifying concept of a PBIN. We find that non-random
patterns, in particular, nestedness and modularity are
repeatedly observed. Although genetic models of coevolu-
tion exist to explain both classes of patterns in simple, low-
diversity communities, there is no unified theory of coevo-
lution that can explain the emergence of complex interac-
tion patterns in diverse communities. In this review, we
have focused on the antagonistic mode of interaction be-
tween phages and bacteria. Looking forward, there is a
need to extend network methodologies and tools to the
study of viruses of currently underrepresented bacterial
hosts, viruses of algae and of archaea, as well as viruses
with alternate infection strategies (e.g., lysogeny). Novel
culture-independent methods and novel computational
tools will be essential to connect genomic, functional,

https://github.com/tpoisot/BiWeb
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and ecological information in predicting cross-infection at
the community scale (Box 3). Improving the ability to
quantify and predict viral infection of hosts constitutes a
key challenge in assessing the functional effects of viruses
in the environment.
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